Inhibition of the ER Ca2+ pump forces multidrug-resistant cells deficient in Bak and Bax into necrosis.
نویسندگان
چکیده
Tumor cells deficient in the proapoptotic proteins Bak and Bax are resistant to chemotherapeutic drugs. Here, we demonstrate that murine embryonic fibroblasts deficient for both Bak and Bax are, however, efficiently killed by thapsigargin, a specific inhibitor of ER Ca(2+) pumps that induces ER stress by depleting ER Ca(2+) stores. In the presence of Bak and Bax, thapsigargin eliminates cells by release of mitochondrial cytochrome c and subsequent caspase activation, which leads to the proteolytic inactivation of the molecular necrosis switch PARP-1 and results in apoptosis. By contrast, in the absence of Bak and Bax, a failure to activate caspases results in PARP-1-mediated ATP depletion. The subsequent necrosis is not prevented by autophagy as an alternative energy source. Moreover, in cells deficient for both Bak and Bax, thapsigargin induces permanent mitochondrial damage by Ca(2+) overload, permeability transition and membrane rupture. Thus, even though deficiency in Bak and Bax protects these cells against apoptosis, it does not compromise necrosis induced by SERCA inhibitors. Importantly, thapsigargin induces caspase-independent cell death also in colon and prostate carcinoma cells deficient in Bak and Bax expression. Therefore, targeted application of ER stressors such as thapsigargin might be a promising approach for the treatment of Bak- and Bax-deficient, drug-resistant tumors.
منابع مشابه
BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death.
BIK, a pro-apoptotic BH3-only member of the BCL-2 family, targets the membrane of the endoplasmic reticulum (ER). It is induced in human cells in response to several stress stimuli, including genotoxic stress (radiation, doxorubicin) and overexpression of E1A or p53 but not by ER stress pathways resulting from protein malfolding. BIK initiates an early release of Ca2+ from ER upstream of the ac...
متن کاملBax regulates primary necrosis through mitochondrial dynamics.
The defining event in apoptosis is mitochondrial outer membrane permeabilization (MOMP), allowing apoptogen release. In contrast, the triggering event in primary necrosis is early opening of the inner membrane mitochondrial permeability transition pore (mPTP), precipitating mitochondrial dysfunction and cessation of ATP synthesis. Bcl-2 proteins Bax and Bak are the principal activators of MOMP ...
متن کاملBax and Bak independently promote cytochrome C release from mitochondria.
Pro-apoptotic Bax and Bak have been implicated in the regulation of p53-dependent apoptosis. We assessed the ability of primary baby mouse kidney (BMK) epithelial cells from bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice to be transformed by E1A alone or in conjunction with dominant-negative p53 (p53DD). Although E1A alone transformed BMK cells from p53-deficient mice, E1A alone did not transfo...
متن کاملAutophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak
Cells deficient in the pro-death Bcl-2 family members Bax and Bak are known to be resistant to apoptotic cell death, and previous we have shown that these two effectors are also needed for mitochondrial-dependent cellular necrosis (Karch et al., 2013). Here we show that mouse embryonic fibroblasts deficient in Bax/Bak1 are resistant to the third major form of cell death associated with autophag...
متن کاملEndogenous Bak inhibitors Mcl-1 and Bcl-xL: differential impact on TRAIL resistance in Bax-deficient carcinoma
Tumor necrosis factor (alpha)-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 122 Pt 24 شماره
صفحات -
تاریخ انتشار 2009